Computer Age Statistical Inference

Algorithms, Evidence, and Data Science

Hardcover

English language

Published Nov. 2, 2016 by Cambridge University Press.

ISBN:
978-1-107-14989-2
Copied ISBN!

View on OpenLibrary

5 stars (2 reviews)

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

2 editions

Review of 'Computer Age Statistical Inference' on 'Goodreads'

4 stars

Two experts from Stanford have written a great historical/philosophical/mathematical overview of modern statistics that compares and contrasts frequentist, Bayesian and computer intensive algorithmic approaches to data analysis. I've fooled with all this stuff, but it's a pleasure having professors this smart tie it all together. It seems like it must have been an Herculean task. There are good examples and a very small amount of R code. The book, from Cambridge U press, is also very well produced.